

Decarbonisation through Continuous Analysis and Enhancement of Facilities Energy Efficiency

CEng, REA, MHKIE, MCIBSE, MASHRAE, FHKAEE, BEAM Pro, RCX Pro Director - Facilities Planning & Operations

UFI Operations and Services Awards Entry by Hong Kong Convention and Exhibition Centre (Management) Limited

- 1. INTRODUCTION OF HKCEC
- 2. OUR VISION, COMMITMENT, LEADERSHIP AND TARGET
- 3. OVERVIEW OF CARBON MANAGEMENT JOURNEY
- 4. HOLISTIC MANAGEMENT APPROACHES
- 5. PROJECTS CASE STUDY
 - Chiller Plant Upgrade
 - Air Side Systems Enhancement
- 6. SUMMARY OF ACHIEVEMENTS
- 7. FORWARD LOOKING PLANNING

FAST FACTS

The Hong Kong Convention and Exhibition Centre (HKCEC) first opened in **1988**

2 expansions completed in 1997 and 2009

Our Size & Facilities

Size and	d Scale	Equipment
306,00	0 m ²	12,000 TR Chiller Plant (13 nos. chillers
6	Exhibition Halls	79 PAUS, 246 AHUS,
2	Multi-Purpose Halls	39 Lift, 89 Escalators
52	Meeting Rooms	
7	Restaurants	

Leadership in Carbon Emission Management

- First organisation in HK accredited ISO 20121 (Event Sustainability Management System) in 2015
- First energy audit in 2016
- Net Zero Carbon Event Pledge in 2021

Our Events: **1,000** events and **8.5 million** attendance annually pre-COVID-19

44 Entertainment & Special Events

159 Conferences & Conventions

327 Banquets

2. OUR VISION, COMMITMENT, LEADERSHIP, TARGET

Our Commitment

To be among the **best exhibition** and convention centres globally, renowned for excellence and hosting the world's greatest events while enhancing Hong Kong's international image.

Commit to Net Zero Carbon Event Pledge in 2021

Commit to corporate social responsibility, to reduce carbon emissions associated with our operation and adopt leadership role for our stakeholders (visitors and customers, event organisers, contractors and other business), exploring means of improving their efficiency and reducing their resources use, hence the carbon emissions.

Established Climate Change Policy in 2023.

Re-organized our cross-departmental Sustainability Committee to explore ways and oversee the implementation of carbon reduction plans / continuous improvement, ensuring climate risks are incorporated in facility and event management mindsets

To reduce our carbon emissions by 50% by 2030.

To reduce our carbon emissions by 100% from at or before 2050, achieving carbon net zero.

3.OVERVIEW OF CARBON MANAGEMENT JOURNEY

Major Wo	 Start of Journey ISO 20121 accreditation First engagement of energy consultant 			• Strategized Reduction Start of 1 st 5-year Advancement Project - Installation of Solar Panels - Lighting Replacemen - AHUs replacement ir Convention Hall		ear Project of Solar lacement sement in Hall	 The Pledge and Improvements At COP26 (26th Climate Char Conference, HML Managing Director Monitor Lee-Muller became first in HK exhibitior industry pledging 50% carbo emissions reduction by 2030 and achieving net zero by 20 t 2nd Energy Audit 		 Change Management e. Established Climate Change Policy Peorganized Sustainability Committee being lead by senior executive Received LEED EB Gold Award for whole Centre 	
	2015	2016	2017	2018	2019	2020	2021	2022	2023	
		 In-depth Study 1st ASHRAE Lv2 Energy Audit Established Energy Baseline and Normalization Model to facilitate tracking future energy use 		 Infrastructure Upgrade BMS upgrade together with installing 650 nos of IoT sensors in our Exhibition Halls Power Monitoring System with 450 digital power meters Planning of 5-year 		 Continuous 5-year Advancement Project Start of AHUs Replacement in Exhibition Halls during COVID period Lighting Replacement for Harbour Road Entrance Study of Demand Control Ventilation 		 Continuous Carbon Reduction 2 Nos. of new chillers with high energy efficiency and low GWP refrigerant are put in operations Carbon Audit 		

Advancement Project

Multi-dimensional Change Management Framework

Change Governance	TOP MANAGEMENT BUY-IN Commitment, Clear Visions and Leadership, Strategic Direction	ISIGHT OPERAT nent Assessment, Pla t Execution of Ad	TION TEAM anning, Continuous vancement Projects	EFFECTIVE COMMUN Transparency, identify cha solution and voice achiev	ICATION allenges, ements	INDEPENDENT OVERSIGHT Engage independent external technical experts to verify results	
Change Implementation and Communication	INFRASTRUCTURE AND SYSTE MANAGEMENT & UPGRADI 01 Building Management Systems 02 Digital f and Ser Installa 03 System Integration- Building System with Event Management Systems	E Meters nsors tion s s	TRY LEADERSHIPImage: Strate Str	TECHN FUTU O1 UNDERSTAND AND DIGITISE UNDERSTAND IN AND DIGITISE	NOLOGY AND RE ENABLING 02 03 TEGRATE TRAINING AND REALISE CODE Integrate event / siness metrics with invining a carbon mining carbon emission	ST. Event OC Event installa initiatives to more converse to reduce car footprint by t suppliers Employe Leadership pr and initiatives creativity of st the carbon foo reduction jour	
Change Monitoring, Evaluation and Sustaining	 Provide ISO training Provide training on how saving can be strived from daily operations TRAINING AND SUI RCx training Rcx training Risk management 	PPORT O · Team-wide, exhibitioner – resource reduction · Develop our talents with carbon reduction skillsets	CONTINUOUS MONIT	TORING AND EVALU	JATION CONT Pagement/ Metrics	TINUOUS S ■	SUCCESS COMMUNICATION

² 4.PROJECT CASE STUDY – CHILLER PLANT UPGRADE

CHILLER PLANT UPGRADE PROJECT (2021-2023)

The Challenges

- Invest in **plant upgrade** that consider **values beyond cost and payback**, but also long-term carbon emission and future-enabling continuously optimizations.
- Fit in the part load energy efficiencies of chillers offered by different brands of chiller suppliers to the cooling demand profiles to work out the least possible energy consumption.

Objectives

- Carbon Emission Reduction Target: 2,000 Ton CO2-e / Year
- Minimise the chiller energy/ carbon emission over the 25-year equipment life cycle.
- Minimise the environmental impacts by selecting a more environmental-friendly refrigerant (i.e., ozone depletion potential, lower refrigerant leakage).

Scope

- Analyse cooling demand profiles and determine how many numbers and which chillers and associated chilled water pumps to be replaced.
- Carry out refrigerants analysis.
- In-depth study and compare different types of the chiller plant sequencing controls based on the chiller part load efficiencies.

25-Year Carbon Emission Projection for Chillers Replacement

Total Equivalent Warming Impact (TEWI) Analysis for Chiller Replacement over 25-Year Life Cycle

4.PROJECT CASE STUDY – CHILLER PLANT UPGRADE

8

CHILLER PLANT UPGRADE PROJECT

Achievements

Carbon Emissions Reduction Result: 2,500 Ton CO2-e / Year (Exceed initial target)

Chiller Efficiency Comparision Existing Chiller New Chiller

20% 30%

40%

50% 60% 70%

Operation Load (%)

1.4

1.2

0.2

80% 90% 100%

4.PROJECT CASE STUDY – CHILLER PLANT UPGRADE

OPTIMISED CHILLER PLANT CONTROL EXAMPLES

STAGING OPTIMISATION

10%

3.11

2.93

2.88

2.80

2.53

2.35

2.29

2.25

2.2

- Ensure correct time to switch on-off equipment
- Optimised staging setpoint according to event, weather

LEAD-LAG OPTIMISATION

- Select sequence of equipment to turn on / off
- Optimised with weather and equipment actual efficiency

PUMPS SEQUENCING OPTIMISATION

- Adjust staging of pump to fully utilize saving potential of VSD
- Utilize DAS for data driven decision for pump setpoint reset

4.PROJECT CASE STUDY – AIR SIDE SYSTEMS ENHANCEMENT

AIR SIDE SYSTEMS ENHANCEMENT (2019-2023)

The Challenges

- Just one-to-one Air Handing Unit (AHU) replacement cannot maximize the carbon emission reduction.
- Different types of events has its own characteristic of occupancy / thermal • demand patterns, hence it implies one control mode for AHUs difficult to make energy efficient operations for all types of events.
- For different types of events, need to review, monitor and adjust the controls of fresh air supply smartly to fulfill the indoor air quality requirement as well as conserve the energy consumption.

Objectives

- Carbon Emission Reduction Target: 700 Ton CO2-e / Year •
- Equip the facility with digital meters to enable further in-depth analysis for ٠ adjusting the controls if necessary.
- Redesign of air side controls to suit complex occupancy levels arising from ٠ different types of events.

Scope (Multiple Projects)

- Study and adopt latest technologies applicable to Air Handling Units (AHUs) replacement projects for our Exhibition Halls in Phase II
- Study different AHU control logics and settings to suit different types of events
- Launch the demand ventilation controls for AHUs serving Exhibition Halls and ٠ **Kitchen Exhaust System**

Occupancy level of different event types

Conferences and Convention Exhibition - Trade Exhibition - Public Banguets

AHU-G-09 (For L1 W.CONC(S)) Individual Contr

Entertainment

BMS Controls Before AHUs Replacement

4.PROJECT CASE STUDY – AIR SIDE SYSTEMS ENHANCEMENT

AIR SIDE SYSTEMS ENHANCEMENT

4.PROJECT CASE STUDY – AIR SIDE SYSTEMS ENHANCEMENT

AIR SIDE SYSTEMS ENHANCEMENT

Achievements

Carbon Emissions Reduction Result: 850 Ton CO2-e / Year (Exceed initial target)

By end of FY2023, percentage of carbon footprint will be reduced by 21.8%

201′	7 20	18	2019	2020	202	2.1 2	022	2023	
Accumulated Carbon Reduction	456.62	TCO2-e	1,862 ТСО2-е	5,584 TCO2-e	6,195 TC	O2-e 6,9	26 ТСО2-е	8,870 TCO2-e	
Baseline 2017/18^ 40,644 TCO2-e	Optimise demand control ventilation Lighting replacemen	Lighting replac Chiller auto Sta t Control	ement AHU replacem aging Lighting replac Rectify idle ch	Lighting replace AHU replacen Rectify existin exhaust dema CHW diff. pres Rectify Escala operation 4 RCx project	cement C nent S g kitchen A nd control L ssure reset K tor VSD c s F A 6	hiller Replacement tage 1 HU replacement ighting replacement itchen demand ontrol ventilation ghting replacement eview move-in/out HU/PAU operation RCx projects	Chiller Repla Stage 2 Chiller plant optimization Hall demand ventilation Lighting repl PAU setpoin 1 RCx project	acement 12 , I control acement t reset cts Carbon Reduct	493,585 KWh 8,870 tCO ₂ e
	Optimise DP on SCHWP Hall AHU/Lighting Best Practice 3 RCx projects	Rectify idle chi bypass 2 RCx projects	ler Optimise dema ventilation CHW header I reset 3 RCx projects	and control DP setpoint s				8,870 TCO2- (21.8% reduction rel baseline)	e lative to

^ Major Carbon Emission of HKCEC by Scope 2 (electricity purchase) only

Values and Benefits of Decarbonization

Environmental Benefit

8,870 Ton CO2-e or 21.8% by end of 2030 relative to 2017 as baseline,

Planting of 386,000 trees

Financial Benefit

Cumulative reduction on electricity consumption since 2017:

Over 12M kWh

Cumulative cost saving: Up to HK\$20M

Other Intangible Values

Internal

Demonstrate a "can-do" mindset to our staff on moving towards net-zero carbon pledge

External

- Influence positively our stakeholders for collaboration to reduce the carbon emissions of their events
- Share what we learnt to other venue operators aiming to support the decarbonisation of the whole industry

Moving Towards Digitization

UTILIZATION OF ENGINEERING DATA

To develop the current Single SMART Platform for real-time monitoring

- Energy Consumption and Usage Intensity
- System operation vs Event Schedule

Venue Energy Management

- Enhance data coverage to show - Venue Energy Consumption
- Venue Water Consumption

Flexibility of integration

DAS is adopted in 2017 and support integration to building service, IT system

Integration to non Engineering Data

- Event Management System
- People Counting System

Data Transparency to Organizers

- Venue Energy / Water consumption
- Carbon footprint for Event

Model data preparation

- Current DAS already stored 4+ year of operation data
- Create relationship among Engineering and non-Engineering data for future modeling
- All data will be analysed and utilized as appropriate for future AI / ML system integration

FUTURE AI AND MACHINE LEARNING ENBLED DECISION- MAKING

Al / Machine Learning-based decision making

- Turn on-off equipment at the correct time
- Adjust setpoint based on event type, actual operation, and current weather condition
- Data-driven decision on which equipment to turn on based on the historical efficiency

Development Plan

Integration with Events Data

Future Enabling

Future Scenario

THANK YOU!

Hong Kong Convention and Exhibition Centre (Management) Limited